Search results for "linear matrix inequalities"

showing 10 items of 13 documents

Robust control of uncertain multi-inventory systems via linear matrix inequality

2008

We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.

Mathematical optimizationLinear Matrix InequalitiesPolytopeDynamical Systems (math.DS)stock control93xxcontinuous systems linear matrix inequalities linear systems manufacturing systems robust control state feedback stock control uncertain systemsimpulse control inventory control hybrid systemsSettore ING-INF/04 - AutomaticaControl theoryFOS: Mathematicsmanufacturing systemsMathematics - Dynamical Systemslinear matrix inequalitiesstate feedbackTime complexityMathematics - Optimization and ControlInventory systemsMathematicsInventory controlLinear Matrix Inequalities; Inventory systemsLinear systemlinear systemsLinear matrix inequality93Cxx;93xxLinearity93Cxxhybrid systemsEllipsoidComputer Science Applicationsimpulse control; inventory control; hybrid systemsuncertain systemsControl and Systems EngineeringOptimization and Control (math.OC)Control systemBounded functioncontinuous systemsPerpetual inventorycontinuous systems; linear matrix inequalities; linear systems; manufacturing systems; robust control; state feedback; stock control; uncertain systemsinventory controlRobust controlSettore MAT/09 - Ricerca Operativarobust controlimpulse control
researchProduct

On the stability analysis for impulsive switching system with time-varying delay

2014

This paper focuses on the stability and stabilization problem for a neutral impulsive switching system with time-varying delay. Based on LMI method and optimization technologies, some stability criteria are derived for this kind of system. Some example and numerical simulation are given to demonstrate the effectiveness of our theoretical results. Refereed/Peer-reviewed

Mathematical optimizationComputer simulationLinear matrix inequalitiesStability (probability)impulsive switchingImpulsive switching; Linear matrix inequalities; neutral system; Time delay; Electrical and Electronic Engineering; Control and Systems EngineeringControl and Systems EngineeringControl theoryneutral systemImpulsive switchingElectrical and Electronic Engineeringlinear matrix inequalitiesTime delayMathematics2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE)
researchProduct

Static output-feedback controller design for vehicle suspensions: an effective two-step computational approach

2014

In this study, a novel two-step methodology is applied in designing static output-feedback controllers for a class of vehicle suspension systems. Following this approach, an effective synthesis of static output-feedback controllers can be carried out by solving two consecutive linear matrix inequality optimisation problems. To illustrate the main features of the proposed design strategy, two different static output-feedback H 8 controllers are designed for a quarter-car suspension system. The first of those controllers uses the suspension deflection and the sprung mass velocity as feedback information, whereas the second one only requires the sprung mass velocity to compute the control acti…

Output feedbackEngineeringFrequency responseControl and Optimization:Informàtica::Automàtica i control [Àrees temàtiques de la UPC]Linear matrix inequalitiesVehicle suspensionsDesign strategyControl and Systems Engineering; Human-Computer Interaction; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and Optimization; Electrical and Electronic EngineeringFeedback control systemsMatrius (Matemàtica)Vehicles -- Ressorts i suspensió:93 Systems Theory; Control [Classificació AMS]Control theoryDeflection (engineering)ControlElectrical and Electronic EngineeringMatrix inequalitiesSuspension (vehicle)Controller design:93 Systems Theory [Classificació AMS]Vehicles--Springs and suspensionbusiness.industryLinear matrix inequality:Matemàtiques i estadística [Àrees temàtiques de la UPC]Control engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionVehicles -- Springs and suspensionComputer Science ApplicationsHuman-Computer InteractionControl and Systems EngineeringSistemes de control per retroaccióSprung massbusinessStatic output-feedback control
researchProduct

Robust delay-dependent H∞ control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching p…

2011

Author's version of an article published in the journal: IEEE Transactions on Circuits and Systems I: Regular Papers. Also available from the publisher at: http://dx.doi.org/10.1109/tcsi.2011.2106090 The problem of robust mode-dependent delayed state feedback H ∞ control is investigated for a class of uncertain time-delay systems with Markovian switching parameters and mixed discrete, neutral, and distributed delays. Based on the LyapunovKrasovskii functional theory, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities for the stochastic stability and stabilization of the considered system using some free matrices. The desired control is …

delay systems H∞ control linear matrix inequalities Markov processes uncertain systems delay-dependent delayed state feedback distributed delays Lyapunov-Krasovskii functionals Markovian switching numerical example Stochastic stability and stabilization sufficient conditions uncertain time-delay system control system stability convex optimization delay control systems stabilization state feedback switching systems time delay uncertainty analysis discrete time control systemsVDP::Technology: 500::Mechanical engineering: 570VDP::Mathematics and natural science: 400::Mathematics: 410
researchProduct

Robust H∞ sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system

2014

Published version of an article in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-014-5910-8 In this paper, we exploit the sliding mode control problem for a fluid power electrohydraulic actuator (EHA) system. To characterize the nonlinearity of the friction, the EHA system is modeled as a linear system with a system uncertainty. Practically, it is assumed that the system is also subject to the load disturbance and the external noise. An integral sliding mode controller is proposed to design. The advanced techniques such as the H ∞ control and the regional pole placement are employed to derive t…

Variable structure controlEngineeringbusiness.industrypole placementMechanical EngineeringLinear systemLinear matrix inequalitysliding mode controlComputer Science Applications1707 Computer Vision and Pattern RecognitionVDP::Technology: 500::Electrotechnical disciplines: 540Sliding mode controlLinear matrix inequalities (LMIs); Pole placement; Sliding mode control; Control and Systems Engineering; Software; Mechanical Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Industrial and Manufacturing EngineeringVDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Industrial and Manufacturing EngineeringComputer Science ApplicationsNonlinear systemFluid powerControl theoryControl and Systems EngineeringFull state feedbacklinear matrix inequalities (LMIs)ActuatorbusinessSoftwareH∞ control
researchProduct

A time-varying observer for linear systems with asynchronous discrete-time measurements

2017

International audience; In this paper we propose a time-varying observer for a linear continuous-time plant with asynchronous discrete-time measurements. The proposed observer is contextualized in the hybrid systems framework providing an elegant setting for the proposed solution. In particular some theoretical tools are provided, in terms of LMIs, certifying asymptotic stability of a certain compact set where the estimation error is zero. Moreover the case of asynchronous measurements is considered, i.e. when the measurements are not provided in well defined time instants, but they occur at an arbitrary time in a certain time interval. A design procedure based on the numerical solution of …

0301 basic medicine0209 industrial biotechnologyObserver (quantum physics)Computer scienceLinear system02 engineering and technologyInterval (mathematics)Sampled-data observerdiscrete asynchronous measurement[SPI.AUTO]Engineering Sciences [physics]/Automatic03 medical and health sciences030104 developmental biology020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaExponential stabilityDiscrete time and continuous timeAsynchronous communicationControl theoryHybrid systemhybrid systemlinear systemlinear matrix inequalities
researchProduct

A robust fault detection design for uncertain Takagi-Sugeno models with unknown inputs and time-varying delays

2013

Abstract This paper investigates the problem of robust fault detection system design for a class of uncertain Takagi–Sugeno (T–S) models. The system under consideration is subject to unknown input and time-varying delay. The fault detection system is designed such that the unknown input is thoroughly decoupled from residual signals generated by the fault detection system. Furthermore, the residual signals show the maximum possible sensitivity to the faults and the minimum possible sensitivity to the external disturbances. The model matching approach is utilized to tackle the effects of parametric uncertainties in the model of the system. The design procedure is presented in terms of Linear …

Engineeringbusiness.industryLinear Matrix InequalitiesComputer Science Applications1707 Computer Vision and Pattern RecognitionLinear matrixT-S modelResidualFault detection and isolationComputer Science ApplicationsTakagi sugenoControl theoryControl and Systems EngineeringSystems designSensitivity (control systems)Time-delayModel matchingbusinessFault detectionFault detection; Linear Matrix Inequalities; T-S model; Time-delay; Unknown input; Control and Systems Engineering; Analysis; Computer Science Applications1707 Computer Vision and Pattern RecognitionUnknown inputAnalysisParametric statistics
researchProduct

Comments on “Finite-Time $H_{\infty }$ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State Feedback”

2014

This paper investigates a defect appearing in “Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback,” which the observer-based finite-time H∞ controller via dynamic observer-based state feedback could not ensuring stochastic finite-time boundedness, and satisfying a prescribed level of H∞ disturbance attenuation for the resulting closed-loop error fuzzy Markov jump systems. The corrected results are presented, and the improved optimal algorithms and new simulation results are also provided in this paper.

Observer (quantum physics)Applied MathematicsFinite-time H controlMarkov processTakagi-Sugeno (T-S) fuzzy modelFuzzy control systemState (functional analysis)Fuzzy logicNonlinear systemsymbols.namesakeComputational Theory and MathematicsArtificial IntelligenceControl and Systems EngineeringControl theoryMarkov jump systems (MJS)observer-based state feedbacksymbolsJumplinear matrix inequalities (LMIs)Finite-time H control; linear matrix inequalities (LMIs); Markov jump systems (MJS); observer-based state feedback; Takagi-Sugeno (T-S) fuzzy model; Control and Systems Engineering; Artificial Intelligence; Computational Theory and Mathematics; Applied MathematicsMathematicsIEEE Transactions on Fuzzy Systems
researchProduct

Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps

2014

This paper is concerned with stochastic finite-time boundedness analysis for a class of uncertain discrete-time neural networks with Markovian jump parameters and time-delays. The concepts of stochastic finite-time stability and stochastic finite-time boundedness are first given for neural networks. Then, applying the Lyapunov approach and the linear matrix inequality technique, sufficient criteria on stochastic finite-time boundedness are provided for the class of nominal or uncertain discrete-time neural networks with Markovian jump parameters and time-delays. It is shown that the derived conditions are characterized in terms of the solution to these linear matrix inequalities. Finally, n…

Lyapunov functionDiscrete-time systems; Linear matrix inequalities; Markovian jump systems; Neural networks; Stochastic finite-time boundedness; Artificial Intelligence; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive NeuroscienceArtificial neural networkMarkov chainStochastic processCognitive NeuroscienceMarkovian jump systemsLinear matrix inequalitiesLinear matrix inequalityComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science Applicationssymbols.namesakeDiscrete time and continuous timeArtificial IntelligenceDiscrete-time systemssymbolsCalculusApplied mathematicsStochastic neural networkJump processNeural networksStochastic finite-time boundednessMathematics
researchProduct

Finite-Time H∞ Filtering for T-S Fuzzy Discrete-Time Systems with Time-Varying Delay and Norm-Bounded Uncertainties

2015

In this paper, we investigate the filtering problem of discrete-time Takagi–Sugeno (T–S) fuzzy uncertain systems subject to time-varying delays. A reduced-order filter is designed. With the augmentation technique, a filtering error system with delayed states is obtained. In order to deal with time delays in system states, the filtering error system is first transformed into two interconnected subsystems. By using a two-term approximation for the time-varying delay, sufficient delay-dependent conditions of finite-time boundedness and $H_{\infty }$ performance of the filtering error system are derived with the Lyapunov function. Based on these conditions, the filter design methods are propose…

Lyapunov function0209 industrial biotechnology02 engineering and technologyFuzzy logicsymbols.namesake020901 industrial engineering & automationControl theoryArtificial Intelligence0202 electrical engineering electronic engineering information engineeringFiltering problemnorm-bounded uncertaintieslinear matrix inequalities (LMIs)T-S fuzzy systemMathematicsApplied MathematicsFilter (signal processing)Finite-time boundednesstime delayFilter designH-infinity methods in control theoryDiscrete time and continuous timeComputational Theory and MathematicsControl and Systems EngineeringBounded functionsymbols020201 artificial intelligence & image processingHâ filteringFinite-time boundedness; H∞ filtering; linear matrix inequalities (LMIs); norm-bounded uncertainties; T-S fuzzy system; time delay; Control and Systems Engineering; Computational Theory and Mathematics; Artificial Intelligence; Applied Mathematics
researchProduct